Elliptic functions, Green functions and the mean field equations on tori

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Functions, Green Functions and the Mean Field Equations on Tori

We show that the Green functions on flat tori can have either 3 or 5 critical points only. There does not seem to be any direct method to attack this problem. Instead, we have to employ sophisticated non-linear partial differential equations to study it. We also study the distribution of number of critical points over the moduli space of flat tori through deformations. The functional equations ...

متن کامل

Green Functions of Relativistic Field Equations

In this paper, we restudy the Green function expressions of field equations. We derive the explicit form of the Green functions for the Klein-Gordon equation and Dirac equation, and then estimate the decay rate of the solution to the linear equations. The main motivation of this paper is to show that: (1). The formal solutions of field equations expressed by Green function can be elevated as a ...

متن کامل

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

Elliptic Functions and Equations of Modular Curves

Let p ≥ 5 be a prime. We show that the space of weight one Eisenstein series defines an embedding into P(p−3)/2 of the modular curve X1(p) for the congruence group Γ1(p) that is scheme-theoretically cut out by explicit quadratic equations.

متن کامل

on the mean convergence of biharmonic functions

let denote the unit circle in the complex plane. given a function , one uses t usual (harmonic) poisson kernel for the unit disk to define the poisson integral of , namely . here we consider the biharmonic poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . we then consider the dilations for and . the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2010

ISSN: 0003-486X

DOI: 10.4007/annals.2010.172.911